Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Rep ; 14(1): 8494, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605041

RESUMEN

Effective forecasting of energy consumption structure is vital for China to reach its "dual carbon" objective. However, little attention has been paid to existing studies on the holistic nature and internal properties of energy consumption structure. Therefore, this paper incorporates the theory of compositional data into the study of energy consumption structure, which not only takes into account the specificity of the internal features of the structure, but also digs deeper into the relative information. Meanwhile, based on the minimization theory of squares of the Aitchison distance in the compositional data, a combined model based on the three single models, namely the metabolism grey model (MGM), back-propagation neural network (BPNN) model, and autoregressive integrated moving average (ARIMA) model, is structured in this paper. The forecast results of the energy consumption structure in 2023-2040 indicate that the future energy consumption structure of China will evolve towards a more diversified pattern, but the proportion of natural gas and non-fossil energy has yet to meet the policy goals set by the government. This paper not only suggests that compositional data from joint prediction models have a high applicability value in the energy sector, but also has some theoretical significance for adapting and improving the energy consumption structure in China.

2.
J Biomech ; 166: 112029, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447428

RESUMEN

This study investigates the impact of increasing backpack load on the gait of adolescents during stair descent. Sixteen healthy male students (age = 12.9 ± 0.6 years) were required to descend the stairs in 4 loaded conditions. The kinematic, kinetic, and EMG data were collected synchronously and gait parameters, especially indicators of balance control, were analyzed. The posterior tilt angles (COM-COP IA in the sagittal plane) (0 %-42 %, 48 %-53 %, 58 %-91 %, p < 0.01), trunk anterior tilt angles (9-33 %, 51-65 %, p < 0.01), and CV of stride length (p < 0.01) increased with the backpack load. The COM-Step edge separation decreased with the increased backload (p < 0.01). In addition, the hip flexion torque (25-40 %, 45-51 %, p < 0.01), the rectus femoris activation, and the hip stiffness increased significantly as the load up to 15 % Body Weight (BW)and 20 % BW. The increasing backpack load may affect adolescent's stair descent gait. Especially as the load was up to 15 % BW, the adolescents' bodies tended to tilt backwards relative to the support foot during the single stance phase. They may activate the hip flexors and tilt forward the trunk to recover from the balance perturbation, which was associated with increased hip flexion torques. This adjustment was more pronounced with the increasing backpack load. However, excessive forward flexion may increase the risk of forward falls. The boundaries of adjustment need further research in the future. Findings from this study provide baseline information on the intrinsic mechanisms of balance control during stair descent.


Asunto(s)
Marcha , Caminata , Humanos , Masculino , Adolescente , Niño , Caminata/fisiología , Marcha/fisiología , Extremidad Inferior/fisiología , Pie , Músculo Cuádriceps , Peso Corporal , Fenómenos Biomecánicos
3.
Biosystems ; 236: 105111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159672

RESUMEN

Circadian rhythm is an essential component of biology that organizes the internal synchrony of the organism in response to the environment. Aging significantly impacts circadian rhythm and is also associated with specific sleep complaints in mammals, including earlier awakening and decreased sleep consolidation at the end of the night. However, the regulation mechanism of aging on the circadian rhythm is far from clear. To further understand the impact of aging, we use an existing mathematical model of circadian rhythm combined with the aging system to explore the effects of aging on circadian rhythm and two kinds of sleep disorders, familial late sleep syndrome (FASPS) and delayed sleep syndrome (DSPS). We get a few intriguing findings from numerical simulations. Aging weakens rhythmicity by reducing the amplitude of circadian rhythm. Aging exacerbates the sleep pattern of being early to bed and early to rise by shortening the period of circadian rhythm and advancing the entrainment phase. Aging reduces the ability of the circadian rhythm to respond to light. The elderly need stronger light to get entrainment with the environmental light cycle. It is more difficult for the elderly to recover from disturbed light. Especially elderly people take a longer time to overcome jet lag. Aging worsens the "morningness" of FASPS disorder patients and improves the symptoms of DSPS disorder patients. This study helps to better understand the impacts of aging on circadian rhythm and sleep disorders and provides theoretical support for the treatment of circadian disorders in the elderly.


Asunto(s)
Trastornos del Sueño del Ritmo Circadiano , Trastornos del Sueño-Vigilia , Animales , Humanos , Anciano , Trastornos del Sueño del Ritmo Circadiano/diagnóstico , Trastornos del Sueño del Ritmo Circadiano/terapia , Ritmo Circadiano/fisiología , Trastornos del Sueño-Vigilia/terapia , Envejecimiento , Mamíferos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38040939

RESUMEN

Facing the dual pressures of the exacerbation of global climate change and the deterioration of the domestic environment caused by pollution, China has clearly adopted environmental regulatory measures to improve the climate environment. One measure is the carbon emissions trading scheme (CETS), which serves as a notable example of the country's efforts to improve the climate environment. We gathered panel data from 285 prefecture-level cities in China from 2005 to 2018 and used the Difference-in-Differences (DID) model to empirically examine the synergistic effects of the CETS on carbon emissions and air pollution. The results indicate that CETS have been effective in reducing urban carbon emissions by approximately 9.8%. Additionally, the schemes have caused a simultaneous reduction in particulate matter (PM)2.5 emissions by 11.7% and sulfur dioxide (SO2 ) emissions by approximately 9.7%, mitigating urban air pollution in China. It demonstrates that the scheme has significant synergistic effects on carbon emissions and air pollution. To achieve synergistic effects of CETS, effective measures include reducing energy intensity and upgrading the industrial structure. The implementation of CETS had heterogeneity in different conditions, and the synergistic effect of the scheme is more significant in eastern regions, large cities, and the final industrial stage. Our findings offer innovative solutions for the integrated management of carbon emissions and air pollution and provide valuable insights for policymakers to enhance China's CETS. Integr Environ Assess Manag 2023;00:1-13. © 2023 SETAC.

5.
Math Biosci Eng ; 20(9): 16663-16677, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37920028

RESUMEN

The circadian clock is an autonomous timing system that regulates the physiological and behavioral activities of organisms. Dopamine (DA) is an important neurotransmitter that is associated with many biological activities such as mood and movement. Experimental studies have shown that the circadian clock influences the DA system and disorders in the circadian clock lead to DA-related diseases. However, the regulatory mechanism of the circadian clock on DA is far from clear. In this paper, we apply an existing circadian-dopamine mathematical model to explore the effects of the circadian clock on DA. Based on numerical simulations, we find the disturbance of the circadian clock, including clock gene mutations, jet lag and light pulses, leads to abnormal DA levels. The effects of mutations in some clock genes on the mood and behavior of mice are closely related to DA disruptions. By sensitivity analysis of DA levels to parameter perturbation, we identify key reactions that affect DA levels, which provides insights into modulating DA disorders. Sudden changes in external light influence the circadian clock, bringing about effects on the DA system. Jet lag causes transient DA rhythm desynchronization with the environment and the influence of jet lag in different directions on DA level and phase varies. Light pulses affect the amplitude and phase shift of DA, which provides a promising method for treating DA disorders through light exposure. This study helps to better understand the impact of the circadian clock on the DA system and provides theoretical support for the treatment of DA disorders.


Asunto(s)
Relojes Circadianos , Animales , Ratones , Relojes Circadianos/fisiología , Síndrome Jet Lag/terapia , Ritmo Circadiano/fisiología , Dopamina/farmacología , Modelos Teóricos
6.
Org Lett ; 25(36): 6649-6653, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37656043

RESUMEN

A straightforward approach for the asymmetric synthesis of multifunctionalized γ-lactams, including those bearing two tetrasubstituted stereogenic centers, has been developed through a palladium-catalyzed vinylogous addition/allylic amination process between 1,3-dienes and α-ketoamides. This protocol features advantages of ready substrate availability, broad applicability, high efficiency, and excellent stereoselectivity, making it an attractive complementary tool to the previous strategies.

7.
Plant Commun ; 4(6): 100674, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37598294

RESUMEN

Melatonin (Mel) has previously been reported to effectively alleviate nitrogen-limitation (N-L) stress and thus increase nitrogen-use efficiency (NUE) in several plants, but the underlying mechanism remains obscure. Here, we revealed that OsbZIP79 (BASIC LEUCINE ZIPPER 79) is transcriptionally activated under N-L conditions, and its expression is further enhanced by exogenous Mel. By the combined use of omics, genetics, and biological techniques, we revealed that the OsbZIP79-OsABI5 (ABSCISIC ACID INSENSITIVE 5) module stimulated regulation of reactive oxygen species (ROS) homeostasis and the uptake and metabolism of nitrogen under conditions of indoor nitrogen limitation (1/16 normal level). OsbZIP79 activated the transcription of OsABI5, and OsABI5 then bound to the promoters of target genes, including genes involved in ROS homeostasis and nitrogen metabolism, activating their transcription. This module was also indispensable for upregulation of several other genes involved in abscisic acid catabolism, nitrogen uptake, and assimilation under N-L and Mel treatment, although these genes were not directly transactivated by OsABI5. Field experiments demonstrated that Mel significantly improved rice growth under low nitrogen (L-N, half the normal level) by the same mechanism revealed in the nitrogen-limitation study. Mel application produced a 28.6% yield increase under L-N and thus similar increases in NUE. Also, two OsbZIP79-overexpression lines grown in L-N field plots had significantly higher NUE (+13.7% and +21.2%) than their wild types. Together, our data show that an OsbZIP79-OsABI5 module regulates the rice response to N insufficiency (N limitation or low N), which is important for increasing NUE in rice production.


Asunto(s)
Melatonina , Oryza , Melatonina/farmacología , Melatonina/metabolismo , Ácido Abscísico/metabolismo , Oryza/genética , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nitrógeno/metabolismo , Homeostasis/genética
8.
J Inflamm Res ; 16: 3063-3078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497065

RESUMEN

Background: As multiple mutations of SARS-Cov-2 exist, there are now many viral variants with regional differences in distribution. The clinical characteristics of patients hospitalized with the virus also vary significantly, with those of the Omicron variants being strikingly different from those of the earliest wild-type variant. However, comprehensive data on this subject is lacking. It is therefore crucial to explore these differences to develop better clinical strategies for the management of COVID-19. Methods: A total of 554 confirmed COVID-19 cases in China were clinically classified as mild, moderate, severe, and critical according to their diagnoses and treatment plans. We compared the demographics and clinical characteristics of patients infected with the Omicron vs wild-type strains, between severe and non-severe cases. Bacterial co-infections with SARS-CoV-2 and correlation between inflammatory factors and T cells were analyzed. Results: Compared to the wild-type cases, the severe Omicron cases were older (median age 48.36 vs 73.24), and had more upper-respiratory symptoms and comorbidities. Decreased leukocyte counts were less pronounced, although more instances of significantly decreased CD4+ and CD8+ T-cell counts, elevated infection-related biomarkers (eg procalcitonin and C-reactive protein), and abnormal coagulation factors (including increased D-dimer and fibrinogen levels) were detected in the severe Omicron cases. The mean length of hospital stay was significantly shorter in the severe Omicron cases. CD4+ and CD8+ T cell numbers were negatively correlated with neutrophil-to-lymphocyte ratios, as well as serum interleukin-6, procalcitonin, and C-reactive protein levels. Conclusion: There were significant clinical differences between patients hospitalized with severe cases of Omicron- variant COVID-19 vs wild-type. The Omicron cases tended to be older and had more upper respiratory tract symptoms, comorbidities and bacterial co-infections. Elevated levels of inflammatory cytokines with T-cell depletion correlated with poor disease progression and prognosis. We hope these data provide a theoretical basis for future integrated prevention and control plans for COVID-19.

9.
Anal Biochem ; 676: 115234, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422060

RESUMEN

Abnormal expression of carcinoembryonic antigen (CEA) can be used for early diagnosis of various cancers (e.g. colorectal cancer, cervical carcinomas, and breast cancer). In this work, using l-cysteine-ferrocene-ruthenium nanocomposites (L-Cys-Fc-Ru) to immobilize secondary antibody (Ab2) and Au nanoparticles (NPs) as the substrate to ensure accurate capture of primary antibody (Ab1), a signal-on sandwich-like biosensor was constructed in the presence of CEA. Specifically, Ru nanoassemblies (NAs) were first prepared by a facile one-step solvothermal approach as signal amplifiers for the electrical signal of Fc. Based on specific immune recognition, as the increase of CEA concentration, the content of L-Cys-Fc-Ru-Ab2 captured on the electrode surface also increased, thus the signal of Fc gradually increased. Therefore, the quantitative detection of CEA can be realized according to the peak current of Fc. After a series of experiments, it was found that the biosensor has a wide detection range from 1.0 pg mL-1 to 100.0 ng mL-1 and a low detection limit down to 0.5 pg mL-1, as well as good selectivity, repeatability and stability. Furthermore, satisfactory results were also obtained for the determination of CEA in serums, which were comparable to commercial electrochemiluminescence (ECL) method. The developed biosensor shows great potential in clinical applications.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Antígeno Carcinoembrionario , Oro/química , Nanopartículas del Metal/química , Inmunoensayo/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Límite de Detección
10.
Cell Rep ; 42(7): 112702, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37384532

RESUMEN

Transcriptional regulation of secondary cell wall (SCW) formation is strictly controlled by a complex network of transcription factors in vascular plants and has been shown to be mediated by a group of NAC master switches. In this study, we show that in a bHLH transcription factor, OsbHLH002/OsICE1, its loss-of-function mutant displays a lodging phenotype. Further results show that OsbHLH002 and Oryza sativa homeobox1 (OSH1) interact and share a set of common targets. In addition, the DELLA protein SLENDER RICE1, rice ortholog of KNOTTED ARABIDOPSIS THALIANA7, and OsNAC31 interact with OsbHLH002 and OSH1 and regulate their binding capacity on OsMYB61, a key regulatory factor in SCW development. Collectively, our results indicate OsbHLH002 and OSH1 as key regulators in SCW formation and shed light on molecular mechanisms of how active and repressive factors precisely orchestrate SCW synthesis in rice, which may provide a strategy for manipulating plant biomass production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
11.
Inorg Chem ; 62(10): 4385-4391, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36857465

RESUMEN

In recent years, the synthesis, crystalline structure, and applications of zeolite imidazole frameworks (ZIFs) have attracted extensive attention. Since the ZIF-L phase was synthesized, a new phase was observed during the heating process, but its crystal structure is unknown. The unknown new phase, which was named ZIF-L300 in this study, was confirmed again. In this study, the X-ray powder diffraction technique and Rietveld refinement were used to solve the crystalline structure of the unknown ZIF-L300 phase. The results demonstrate that ZIF-L300 has the same chemical formula (ZnC8N4H10) as in ZIF-8 and belongs to a hexagonal structure with a space group of P61. The lattice parameters have been determined as follows: a = b = 8.708(7) Å, c = 24.195(19) Å, α = ß = 90°, and γ = 120°. The X-ray absorption fine structure (XAFS) technique was also used to extract the local atomic structures. The in situ X-ray diffraction (XRD) technique was used to monitor the structural evolution of the as-prepared ZIF-L in a temperature range from room temperature to 600 °C. The results show that the sample experiences a change process from the initial ZIF-L orthorhombic phase (<210 °C), to the ZIF-L300 hexagonal phase (∼300 °C), then to an amorphous phase (∼390 °C), and finally to a zincite ZnO phase (>420 °C). These sorts of structural information are helpful to the application of ZIF materials and enrich the knowledge of the thermal stability of ZIF materials.

13.
J Plant Physiol ; 281: 153925, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657231

RESUMEN

Himalayan onion (Allium wallichii) is a perennial bulbous herb with high ornamental value and has long been used as traditional medicines in Nepal and China because of the anti-cancer and anti-microbial activities. Wild Allium wallichii features different flower colors, including purple, pink, deep purple and white. However, little is known about the molecular mechanisms of color formation during A. wallichii flower development stages due to the lack of optimal reference genes. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool for quantifying expression levels of target genes. The accuracy of qRT-PCR analyses is largely dependent on the identification of stable reference genes for data normalization. The stability of reference gene expression may vary with plant species and environmental conditions. The aim of this study was to select stable reference genes for qRT-PCR analyses of target genes at flower development stages, in different flower colors and organs for Allium wallichii. The CDSs of eight potential reference genes (TUB2, ACT1, GAPC, EF1α, UBQ, UBC, SAND and CYP1) were cloned and their stability was evaluated by four programs (Delta Ct, geNorm, NormFinder and BestKeeper), and the results were further integrated into a comprehensive rank by RefFinder. The results showed that TUB2 and GAPC were the most stable two reference genes at different developmental stages of purple- and white-flower genotypes and across all samples. UBC and TUB2 expression was stable at different developmental stages of purple flowers. CYP1 and TUB2 were stably expressed at different developmental stages of white flowers. GAPC and SAND showed the highest rankings in different flower colors. TUB2 and EF1α performed the best in different tissues. ACT1 was the least stable gene in all tested samples. Moreover, DIHYDROFLAVONOL-4-REDUCTASE (DFR) gene that involved in anthocyanin synthesis was used to evaluate the effectiveness of the selected candidates. This study identified the first set of suitable reference genes for qRT-PCR analyses, which will lay the foundation for gene function study in A. wallichii.


Asunto(s)
Allium , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Allium/genética , Flores/genética , Genes de Plantas/genética , China , Estándares de Referencia , Perfilación de la Expresión Génica
14.
Neurol Ther ; 12(1): 319-327, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36399224

RESUMEN

BACKGROUND AND OBJECTIVES: Acute COVID-19 infection has been associated with neurological involvement. We report a case series of newly diagnosed patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) developed in a short period of time after acute COVID-19 infection. METHODS: New MS patients developing initial symptoms shortly after an acute COVID-19 infection were diagnosed based on the 2017 McDonald Criteria [Garcia-Ramos et al. in Cells, 2021]. The patients diagnosed with NMOSD met the 2015 International Panel criteria for the diagnosis of NMOSD (IPDN) [Thompson et al. in Lancet Neurol 17:162-173, 2018]. RESULTS FROM THE MS PATIENT GROUP: Ten patients were included who had developed initial MS symptoms after COVID-19 infection. Gender distribution was equal (50% male). The mean age was 28 (range 17-39) years. Average time to neurological presentation was between 2 and 6 weeks following acute COVID-19 infection. Partial transverse myelitis was the initial presentation in 40% of the cases, and 60% of patients had spinal cord lesions present at the moment of diagnosis. All patients showed enhancing lesions on brain magnetic resonance imaging (MRI). The presence of cerebrospinal fluid (CSF) oligoclonal bands was found in all six tested cases. The majority of patients (80%) were unvaccinated for COVID-19. The two vaccinated patients had received two doses of the monovalent COVID-19 messenger ribonucleic acid (mRNA) (Pfizer Biotech) vaccine and no booster, a year prior to contracting COVID-19. RESULTS FROM THE NMOSD GROUP: Two patients with NMOSD were included. Positive aquoporin-4 protein antibody (AQP-4 Ab) was detected in serum in both cases [one Enzyme Linked immunosorbent assay (ELISA) and one cell based]. Both patients had mild COVID-19 infection prior to presentation, initial neurologic symptoms presented between 3 and 6 weeks after COVID-19 infection. Neither patients were vaccinated. Both responded partially to steroids, one developed a relapse 40 days after diagnosis. CONCLUSION: COVID-19 infection has been linked to several neurological and immune-driven conditions. This study suggests that in susceptible individuals, acute COVID-19 infection may act as a trigger for developing MS and NMOSD.

15.
Plants (Basel) ; 11(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36365282

RESUMEN

Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response to salinity. In this study, mutant lines of two non-aromatic varieties, Huaidao#5 (WT_HD) and Jiahua#1 (WT_JH), were generated by targeted mutagenesis of OsBadh2 using CRISPR/Cas9 technology. The mutant lines of both varieties became aromatic; however, WT_HD mutants exhibited an improved tolerance, while those of WT_JH showed a reduced tolerance to salt stress. To gain insight into the molecular mechanism leading to the opposite effects, comparative analyses of the physiological activities and expressions of aroma- and salinity-related genes were investigated. The WT_HD mutants had a lower mean increment rate of malondialdehyde, superoxide dismutase, glutamate, and proline content, with a higher mean increment rate of γ-aminobutyric acid, hydrogen peroxide, and catalase than the WT_JH mutants. Fluctuations were also detected in the salinity-related gene expression. Thus, the response mechanism of OsBadh2 mutants is complicated where the genetic makeup of the rice variety and interactions of several genes are involved, which requires more in-depth research to explore the possibility of producing highly tolerant aromatic rice genotypes.

16.
Bioelectrochemistry ; 148: 108263, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162334

RESUMEN

In clinical analysis, carbohydrate antigen 19-9 (CA199) is a gold standard for pancreatic cancer diagnosis. Herein, PtRu nanoassemblies (NAs) were synthesized via a facile one-step solvothermal approach, with the help of octylphenoxypolye thoxyethanol (NP-40) acted as a growth-directing molecule, and triethylene glycol (TEG) worked as a reductant and solvent. During the assembly process of small particles, a large number of voids were formed, which significantly increase the specific surface area of the PtRu NAs exhibiting excellent electrocatalytic performance. Incorporating the PtRu NAs as signal amplifiers for potassium ferrocyanide oxidation into the specific molecular recognition of proteins, a facile signal-enhanced electrochemical (EC) immunosensor was developed. Verified by a series of experiments, the proposed immunosensor presented a wide linear range (10-4-70 U mL-1) and a low detection limit (3.3 × 10-5 U mL-1), accompanied by good reproducibility, selectivity, and stability, which could be applied in human serum samples for the determination of CA199, and was comparable to commercial electrochemiluminescence (ECL) immunoassay. Feasibility of batch fabrication of PtRu NAs makes nanomaterial-based EC immunoassay promising for the determination of similar cancer markers in future.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Carbohidratos , Técnicas Electroquímicas , Humanos , Inmunoensayo , Límite de Detección , Mediciones Luminiscentes , Nanopartículas del Metal/química , Sustancias Reductoras , Reproducibilidad de los Resultados , Solventes
17.
Nutrients ; 14(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36145061

RESUMEN

BACKGROUND: This study aims to investigate the associations between dietary patterns (breakfast, egg, dairy products, and sugared beverage intake frequencies) and physical fitness among Chinese children and adolescents in Shaanxi Province. METHODS: Data were extracted from the Chinese National Survey on Students' Constitution and Health (CNSSCH). The study ultimately included 7305 participants (48.4% male, 51.6% female) aged 6-22 in Shaanxi Province, China. Multiple linear regression was used to examine the association of the frequency of breakfast, egg, dairy product, and sugared beverage intakes with physical fitness. RESULTS: The frequency of breakfast, egg, and dairy product intakes were all independently and positively associated with the level of physical fitness. The frequency of sugared beverage intake was negatively associated with the level of physical fitness. CONCLUSION: Healthier dietary patterns (i.e., higher breakfast, egg, and dairy product intakes and lower sugared beverage intake) were associated with greater physical fitness. Specifically, maintaining a healthy dietary pattern of breakfast, egg, and dairy product intakes can positively affect the strength and endurance performance of children and adolescents. Increased dairy product intake plays a crucial part in boosting the physical fitness total scores of children and adolescents.


Asunto(s)
Desayuno , Conducta Alimentaria , Adolescente , Niño , China , Dieta , Femenino , Humanos , Masculino , Aptitud Física
18.
Comput Intell Neurosci ; 2022: 3961910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017464

RESUMEN

With the increase in the number of data, the traditional shallow image features cannot meet the needs of image representation. As an important means of image research, deep learning network has been paid attention to. In the field of face image evaluation, deep learning algorithm has been introduced, and the recognition technology has gradually matured. Based on this, this paper studies the application of face image evaluation algorithm of deep learning mobile terminal for student check-in management. A face image detection model for student check-in management is constructed, and a deep learning network is used to realize face detection. A face detection algorithm based on candidate region joint deep learning network is designed, and a face key point detection method based on cascaded convolution network is proposed. Aiming at the low efficiency of face recognition and detection, the existing loss function is optimized, the extraction algorithm of face binary features is proposed, and experiments are designed to analyze the performance of the algorithm. The simulation results show that the face detection based on the improved deep learning network can shorten the retrieval time and improve the accuracy of face image classification.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Humanos , Estudiantes
19.
Comput Intell Neurosci ; 2022: 1478371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837211

RESUMEN

This work aims to improve the feature recognition efficiency of painting images, optimize the style transfer effect of painting images, and save the cost of computer work. First, the theoretical knowledge of painting image recognition and painting style transfer is discussed. Then, lightweight deep learning techniques and their application principles are introduced. Finally, faster convolutional neural network (Faster-CNN) image feature recognition and style transfer models are designed based on a lightweight deep learning model. The model performance is comprehensively evaluated. The research results show that the designed Faster-CNN model has the highest average recognition efficiency of about 28 ms and the lowest of 17.5 ms in terms of feature recognition of painting images. The accuracy of the Faster-CNN model for image feature recognition is about 97% at the highest and 95% at the lowest. Finally, the designed Faster-CNN model can perform style recognition transfer on a variety of painting images. In terms of style recognition transfer efficiency, the highest recognition transfer rate of the designed Faster-CNN model is about 79%, and the lowest is about 77%. This work not only provides an important technical reference for feature recognition and style transfer of painting images but also contributes to the development of lightweight deep learning techniques.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación
20.
World J Emerg Med ; 13(4): 266-273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837557

RESUMEN

BACKGROUND: Patients with sepsis often exhibit an acute inflammatory response, followed by an immunosuppressive phase with a poor immune response. However, the underlying mechanisms have not been fully elucidated. METHODS: We sought to comprehensively characterize the transcriptional changes in neutrophils of patients with sepsis by transcriptome sequencing. Additionally, we conducted a series of experiments, including real-time quantitative polymerase chain reaction (RT-qPCR) and flow cytometry to investigate the role of arginase-1 signaling in sepsis. RESULTS: Through the analysis of gene expression profiles, we identified that the negative regulation of T cell activation signaling was enriched, and the expression of arginase-1 was high in neutrophils from patients with sepsis. Furthermore, we conducted flow cytometry and found that the function of CD8+ T cells in septic patients was impaired. Moreover, neutrophils from septic patients inhibited the percentage of polyfunctional effector CD8+ T cells through arginase-1. Additionally, the proportions of granzyme B+IFN-γ+CD8+ T and TNF-α+IFN-γ+CD8+ T cells increased after inhibition of arginase-1 signaling. CONCLUSION: The impaired effector function of CD8+ T cells could be restored by blocking arginase-1 signaling in patients with sepsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...